Abstract

This study was conducted to determine the potential of in situ biodegradation and identify the geochemical and microbial processes of the petroleum-contaminated subsurface environment using integrated hydro-bio-geochemical markers so that the risk of contamination to subsurface environment can be better understood. The contamination process and corresponding bio-geo-chemistry were analysed in parallel with geochemical and multi-variant statistical modelling at a petroleum-contaminated site in the northeast China. The total petroleum hydrocarbon analysed in the monitoring wells and soil profile demonstrated heavy contamination with potential risk to human health and eco-environment. Further detailed analysis of petroleum fractions revealed a clear spatial variation of organic compositions in groundwater. It was evident that biodegradation and preferential biodegradability contributed considerably to the fraction distribution pattern, which can also be implicated by carbon and microbial respiration in the subsurface environment. The steady decrease in SO42- concentration, detection of S2-, and increase in pH and alkalinity (HCO3-) in groundwater during the monitoring period demonstrated that sulphate reduction was the dominant biodegradation process in most contaminated zones. The results of statistical analysis further suggested that the hydro-geochemical environment was mainly controlled by the regional hydro-geochemical and sulphate reduction process associated closely with the total petroleum hydrocarbon. Knowledge from the comprehensive study provides useful insight on fate, transport and risk assessment of the petroleum contaminants in the shallow subsurface environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.