Abstract
In this study, a high accuracy fingerprint classification method is proposed to enhance the performance in terms of efficiency for fingerprint recognition system. The recognition system has been considered as a reliable mechanism for criminal identification and forensic for its invariance property, yet the huge database is the key issue to make the system obtuse. In former works, the pre-classifying manner is an effective way to speed up the process, yet the accuracy of the classification dominates the further recognition rate and processing speed. In this paper, a rule-based fingerprint classification method is proposed, wherein the two features, including the types of singular points and the number of each type of point are adopted to distinguish different fingerprints. Moreover, when fingerprints are indistinguishable, the proposed Center-to-Delta Flow (CDF) and Balance Arm Flow (BAF) are catered for further classification. As documented in the experimental results, a good accuracy rate can be achieved, which endorses the effectiveness of the fingerprint classification scheme for the further fingerprint recognition system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.