Abstract

The intelligent reflective surface (IRS) is a novel network node that consists of a large-scale passive reflective array to obtain a customized reflected wave direction by modulating the amplitude phase, which can be easily deployed to change the wireless signal propagation environment and enhance the communication performance under a non-line-of-sight (NLOS) environment, where location services cannot perform accurately. In this study, a low-rank matrix reconstruction-enabled fingerprint-based localization algorithm for IRS-assisted networks is proposed. Firstly, a 5G positioning system based on IRSs is constructed using multiple IRSs deployed to reflect signals. This enables the base station to overcome the influence of NLOS and receive the positioning signal of the point to be positioned. Then, the angular domain power expectation matrix of the received signal is extracted as a fingerprint to form a partial fingerprint database. Next, the complete fingerprint database is reconstructed using the low-rank matrix fitting algorithm, thereby considerably reducing the workload of building the fingerprint database. Finally, maximal ratio combining is used to increase the gap between the fingerprint data, and the Weighted K-Nearest Neighbor (WKNN) algorithm is used to match the fingerprint data and estimate the location of the points to be located. The simulation results demonstrate the feasibility of the proposed method to achieve sub-meter accuracy in an NLOS environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call