Abstract

Following the classical Buckley–Leverett theory for the two-phase immiscible flows in porous media a non-linear evolution equation for the water-oil displacement front is formulated and studied numerically. The numerical simulations yield a physically plausible picture of the fingering instability known to develop in water-oil systems. A way to control the unrestricted growth of fingers is discussed. Distinctions and similarities with dynamically related Saffman–Taylor and Darrieus–Landau problems are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.