Abstract

A novel method for finger-vein authentication based on feature-point matching is proposed and evaluated. A finger-vein image captured by infrared light contains artifacts such as irregular shading and vein posture deformation that can degrade accuracy of finger-vein authentication. Therefore, a method is proposed for extracting features from vein patterns and for matching feature points that is robust against irregular shading and vein deformation. In the proposed method, curvature of image-intensity profiles is used for feature point extraction because such image profiles are a robust feature against irregular shading. To increase the number of feature points, these points are extracted from any positions where vein shape is non-linear. Moreover, a finger-shape model and non-rigid registration method are proposed. Both the model and the registration method correct a deformation caused by the finger-posture change. It is experimentally shown that the proposed method achieves more robust matching than conventional methods. Furthermore, experiments on finger-vein identification show that the proposed method provides higher identification accuracy than conventional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.