Abstract

We report here peculiar finger-like patterns observed during the phase separation process of dilute micellar pentaethylene glycol monododecyl ether solutions. The patterns were composed of parallel and periodic threads of micelle-rich domains. Prior to this pattern formation, the phase separation always started with the appearance of water-rich domains rimmed by the micelle-rich domains. It was found that these rims played a significant role in the pattern formation. We explain this pattern formation using a simple simulation model with disconnectable springs. The simulation results suggested that the spatially inhomogeneous elasticity or connectivity of a transient gel of worm-like micelles was responsible for the rim formation. The rims thus formed lead rim-induced nucleation, growth, and elongation of the domains owing to their small mobility and the elastic frustration around them. These rim-induced processes eventually produce the observed finger-like patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call