Abstract

Finger knuckle print (FKP) as a physiological trait with a small image dimension, also a highly distinctive pattern, can be used as a reliable biometric identifier. In this paper, a new effective biometric authentication system using FKP texture based on relaxed local ternary pattern (RLTP) is presented. To further improve performance, cascading, overlapped patching and uniform rotation invariant pattern selection are used. Also to obtain more discriminative dominant patterns, an efficient learning framework is integrated with RLTP feature vectors. Identification and verification experiments conducted on the standard PolyU FKP dataset show the effectiveness of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.