Abstract
This study aimed to investigate the performance of a fine-tuned large language model (LLM) in extracting patients on pretreatment for lung cancer from picture archiving and communication systems (PACS) and comparing it with that of radiologists. Patients whose radiological reports contained the term lung cancer (3111 for training, 124 for validation, and 288 for test) were included in this retrospective study. Based on clinical indication and diagnosis sections of the radiological report (used as input data), they were classified into four groups (used as reference data): group 0 (no lung cancer), group 1 (pretreatment lung cancer present), group 2 (after treatment for lung cancer), and group 3 (planning radiation therapy). Using the training and validation datasets, fine-tuning of the pretrained LLM was conducted ten times. Due to group imbalance, group 2 data were undersampled in the training. The performance of the best-performing model in the validation dataset was assessed in the independent test dataset. For testing purposes, two other radiologists (readers 1 and 2) were also involved in classifying radiological reports. The overall accuracy of the fine-tuned LLM, reader 1, and reader 2 was 0.983, 0.969, and 0.969, respectively. The sensitivity for differentiating group 0/1/2/3 by LLM, reader 1, and reader 2 was 1.000/0.948/0.991/1.000, 0.750/0.879/0.996/1.000, and 1.000/0.931/0.978/1.000, respectively. The time required for classification by LLM, reader 1, and reader 2 was 46s/2539s/1538s, respectively. Fine-tuned LLM effectively extracted patients on pretreatment for lung cancer from PACS with comparable performance to radiologists in a shorter time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.