Abstract

Epidemiological studies of short- and long-term health impacts of ambient air pollutants require accurate exposure estimates. We describe the evolution in exposure assessment and assignment in air pollution epidemiology, with a focus on spatiotemporal techniques first developed to meet the needs of the Multi-ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Initially designed to capture the substantial variation in pollutant levels and potential health impacts that can occur over small spatial and temporal scales in metropolitan areas, these methods have now matured to permit fine-scale exposure characterization across the contiguous USA and can be used for understanding long- and short-term health effects of exposure across the lifespan. For context, we highlight how the MESA Air models compare to other available exposure models. Newer model-based exposure assessment techniques provide predictions of pollutant concentrations with fine spatial and temporal resolution. These validated models can predict concentrations of several pollutants, including particulate matter less than 2.5 μm in diameter (PM2.5), oxides of nitrogen, and ozone, at specific locations (such as at residential addresses) over short time intervals (such as 2 weeks) across the contiguous USA between 1980 and the present. Advances in statistical methods, incorporation of supplemental pollutant monitoring campaigns, improved geographic information systems, and integration of more complete satellite and chemical transport model outputs have contributed to the increasing validity and refined spatiotemporal spans of available models. Modern models for predicting levels of outdoor concentrations of air pollutants can explain a substantial amount of the spatiotemporal variation in observations and are being used to provide critical insights into effects of air pollutants on the prevalence, incidence, progression, and prognosis of diseases across the lifespan. Additional enhancements in model inputs and model design, such as incorporation of better traffic data, novel monitoring platforms, and deployment of machine learning techniques, will allow even further improvements in the performance of pollutant prediction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.