Abstract

BackgroundFinerenone is a nonsteroidal selective mineralocorticoid receptor antagonist that recently demonstrated efficacy in delaying chronic kidney disease progression and reducing cardiovascular events in patients with chronic kidney disease and type 2 diabetes in FIDELIO-DKD, where 5734 patients were randomized 1:1 to receive either titrated finerenone doses of 10 or 20 mg once daily or placebo, with a median follow-up of 2.6 years.MethodsNonlinear mixed-effects population pharmacokinetic models were used to analyze the pharmacokinetics in FIDELIO-DKD, sparsely sampled in all subjects receiving finerenone. Post-hoc model parameter estimates together with dosing histories allowed the computation of individual exposures used in subsequent parametric time-to-event analyses of the primary kidney outcome.ResultsThe population pharmacokinetic model adequately captured the typical pharmacokinetics of finerenone and its variability. Either covariate effects or multivariate forward-simulations in subgroups of interest were contained within the equivalence range of 80–125% around typical exposure. The exposure-response relationship was characterized by a maximum effect model estimating a low half-maximal effect concentration at 0.166 µg/L and a maximal hazard decrease at 36.1%. Prognostic factors for the treatment-independent chronic kidney disease progression risk included a low estimated glomerular filtration rate and a high urine-to-creatinine ratio increasing the risk, while concomitant sodium-glucose transport protein 2 inhibitor use decreased the risk. Importantly, no sodium-glucose transport protein 2 inhibitor co-medication-related modification of the finerenone treatment effect per se could be identified.ConclusionsNone of the tested pharmacokinetic covariates had clinical relevance in FIDELIO-DKD. Finerenone effects on kidney outcomes approached saturation towards 20 mg once daily and sodium-glucose transport protein 2 inhibitor use provided additive benefits.Supplementary InformationThe online version contains supplementary material available at 10.1007/s40262-021-01082-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.