Abstract

The flow past an axisymmetric body at a sufficiently high angle of attack becomes asymmetric and unsteady. Several authors identified three different flow regions for bodies of large fineness ratio at low subsonic flow and high incidence: a steady region in the forebody and two unsteady regions in the rear body. Unsteady Reynolds Averaged Navier–Stokes (URANS) codes with eddy viscosity turbulence models or Reynolds stress turbulence models fail to capture the unsteady flow region. These methods are overly dissipative and resolve only frequencies far lower than turbulent fluctuations. Scale-Adaptive-Simulation (SAS) provides an alternative method to afford the problem of these massively separated flows at high Reynolds numbers without addressing the problem to Large Eddy Simulation (LES). This paper applies SAS to study the effect of slenderness on the flow. The numerical solutions show that the flow becomes more unstable as the fineness ratio increases, and the three flow regions are clearly recognizable. For low fineness ratios, only one of the two unsteady regions is visible. The good agreement between the sectional forces and pressure coefficients with their corresponding experimental data for an ogive-cylinder configuration allows an analysis of the flow structure with a fair degree of confidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.