Abstract

AbstractRechargeable aqueous Zn‐based batteries, benefiting from their good reliability, low cost, high energy/power densities, and ecofriendliness, show great potential in energy storage systems. However, the poor cycling performance due to the formation of Zn dendrites greatly hinders their practical applications. In this work, a trilayer 3D CC‐ZnO@C‐Zn anode is obtained by in situ growing ZIFs (zeolitic‐imidazolate frameworks) derived ZnO@C core–shell nanorods on carbon cloth followed by Zn deposition, which exhibits excellent antidendrite performance. Using CC‐ZnO@C‐Zn as the anode and a branch‐like Co(CO3)0.5(OH)x·0.11H2O@CoMoO4 (CC‐CCH@CMO) as the cathode, a Zn–Co battery is rationally designed, displaying excellent energy/power densities (235 Wh kg−1, 12.6 kW kg−1) and remarkable cycling performance (71.1% after 5000 cycles). Impressively, when using a gel electrolyte, a highly customizable, fiber‐shaped flexible all‐solid‐state Zn–Co battery is assembled for the first time, which presents a high energy density of 4.6 mWh cm−3, peak power density of 0.42 W cm−3, and long durability (82% capacity retention after 1600 cycles) as well as excellent flexibility. The unique 3D electrode design in this study provides a novel approach to achieve high‐performance Zn‐based batteries, showing promising applications in flexible and portable energy‐storage systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.