Abstract

In this paper, we study the sensitivity of CNN outputs with respect to image transformations and noise in the area of fine-grained recognition. In particular, we answer the following questions (1) how sensitive are CNNs with respect to image transformations encountered during wild image capture?; (2) how can we predict CNN sensitivity?; and (3) can we increase the robustness of CNNs with respect to image degradations? To answer the first question, we provide an extensive empirical sensitivity analysis of commonly used CNN architectures (AlexNet, VGG19, GoogleNet) across various types of image degradations. This allows for predicting CNN performance for new domains comprised by images of lower quality or captured from a different viewpoint. We also show how the sensitivity of CNN outputs can be predicted for single images. Furthermore, we demonstrate that input layer dropout or pre-filtering during test time only reduces CNN sensitivity for high levels of degradation. Experiments for fine-grained recognition tasks reveal that VGG19 is more robust to severe image degradations than AlexNet and GoogleNet. However, small intensity noise can lead to dramatic changes in CNN performance even for VGG19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.