Abstract

The design, synthesis, and self-assembly of the first dual hydrophilic triblock copolypeptide vesicles, R(H)(m)E(n)L(o) and K(P)(m)R(H)(n)L(o), is reported. Variation of the two distinct hydrophilic domains is used to tune cellular interactions without disrupting the self-assembled structure. The aqueous self-assemblies of these triblock copolypeptides in water are characterized using microscopy and DLS. Cell culture studies are used to evaluate cytotoxicity as well as intracellular uptake of the vesicles. The ability of polypeptides to incorporate ordered chain conformations that direct self-assembly, combined with the facile preparation of functional, multiblock copolypeptide sequences of defined lengths, allow the design of vesicles attractive for development as drug carriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.