Abstract

BackgroundFeeding-induced cell signaling and metabolic responses affect utilization of dietary nutrients but are rarely taken advantage of to improve animal nutrition. ObjectivesWe hypothesized that by modulating postprandial kinetics and signaling, improved dietary utilization and growth performance could be achieved in animals. MethodsJuvenile turbot (Scophthalmus maximus L.) with an initial mean ± SD weight of 10.1 ± 0.01 g were used. Two feeding frequencies (FFs), either 1 or 3 meals/d at a fixed 2.4% daily body weight ration, and 2 diets that were or were not supplemented with 1% crystalline leucine (Leu), were used in the 10-wk feeding trial. At the end of the trial, a 1-d force-feeding experiment was conducted using the aforementioned FF and experimental diets. Samples were collected for the analysis of postprandial kinetics of aminoacidemia, mechanistic target of rapamycin (mTOR) signaling activities, protein deposition, as well as the mRNA expression levels of key metabolic checkpoints at consecutive time points after feeding. ResultsIncreased FF and leucine supplementation significantly enhanced fish growth by 7.68% ± 0.53% (means ±SD) and 7.89% ± 1.25%, respectively, and protein retention by 4.01% ± 0.59% and 4.44% ± 1.63%, respectively, in feeding trial experiments. The durations of postprandial aminoacidemia and mTOR activation were extended by increased FF, whereas leucine supplementation enhanced mTOR signaling without influencing the postprandial free amino acids kinetics. Increased FF and leucine supplementation enhanced muscle protein deposition 21.6% ± 6.85% and 22.3% ± 1.52%, respectively, in a 24-h postfeeding period. ConclusionsWe provided comprehensive characterization of the postprandial kinetics of nutrient sensing and metabolic responses under different feeding regimens and leucine supplementation in turbot. Fine-tuning of postprandial kinetics could provide a new direction for better dietary utilization and animal performances in aquaculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.