Abstract
(2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.