Abstract

The escalating demand for long-chain polyunsaturated fatty acids (PUFAs) due to their vital health effects has deepened the exploration of sustainable sources. Thraustochytrium sp. stands out as a promising platform for omega-3 and 6 PUFA production. This research strategically optimizes key parameters: temperature, salinity, pH, and G:Y:P ratio and the optimized conditions for maximum biomass, total lipid, and DHA enhancement were 28 °C, 50 %, 6, and 10:1:2 respectively. Process optimization enhanced 32.30 and 31.92 % biomass (9.88 g/L) and lipid (6.57 g/L) yield. Notably, DHA concentration experienced a substantial rise of 69.91 % (1.63 g/L), accompanied by notable increases in EPA and DPA by 82.69 % and 31.47 %, respectively. MANOVA analysis underscored the statistical significance of the optimization process (p < 0.01), with all environmental factors significantly influencing biomass and lipid data (p < 0.05), particularly impacting DHA production. Thraustochytrium sp. can be a potential source of commercial DHA production with the fine-tuning of these key process parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call