Abstract

A series of dinuclear Dy(III) compounds with the general formula [Dy2(μ2-anthc)4(anthc)2(L)2] (anthc(-) = 9-anthracenecarboxylate, L = 2,2'-bipyridyl (1), 1,10-phenanthroline (2), and 4,7-dimethyl-1,10-phenanthroline (3)) were synthesized and magnetically characterized. These compounds exhibit single-molecule magnet (SMM) behavior in the absence of the direct-current field, which is rarely observed for carboxylate-bridged dinuclear Dy2 system. With the first coordination sphere of Dy(III) centers being fixed, the energy barrier was modulated by sequentially modifying the terminal neutral L ligands in this Dy2 system. Theoretical calculations revealed that the symmetry of the charge distribution surrounding the Dy(III) centers in 1-3 is the decisive factor to determine the relaxation of the SMMs. The combination of the larger charge distribution along the magnetic axis and lower charge distribution in the equatorial plane (hard plane) formed by five coplanar coordination atoms including two N atoms provided by an L ligand led to a strong easy-axis ligand field in these compounds. This work presents a rational method to modulate the dynamic magnetic relaxation of the lanthanide SMMs through fine-tuning electrostatic potential of the atoms on the hard plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.