Abstract

AbstractDecreasing perovskite nanocrystal size increases radiative recombination due to the quantum confinement effect, but also increases the Auger recombination rate which leads to carrier imbalance in the emitting layers of electroluminescent devices. Here, we overcome this trade‐off by increasing the exciton effective mass without affecting the size, which is realized through the trace Cd2+ doping of formamidinium lead bromide perovskite nanocrystals. We observe an ~2.7 times increase in the exciton binding energy benefiting from a slight distortion of the [BX6]4− octahedra caused by doping in the case of that the Auger recombination rate is almost unchanged. As a result, bright color‐saturated green emitting perovskite nanocrystals with a photoluminescence quantum yield of 96 % are obtained. Cd2+ doping also shifts up the energy levels of the nanocrystals, relative to the Fermi level so that heavily n‐doped emitters convert into only slightly n‐doped ones; this boosts the charge injection efficiency of the corresponding light‐emitting diodes. The light‐emitting devices based on those nanocrystals reached a high external quantum efficiency of 29.4 % corresponding to a current efficiency of 123 cd A−1, and showed dramatically improved device lifetime, with a narrow bandwidth of 22 nm and Commission Internationale de I'Eclairage coordinates of (0.20, 0.76) for color‐saturated green emission for the electroluminescence peak centered at 534 nm, thus being fully compliant with the latest standard for wide color gamut displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call