Abstract

This study investigates the application of different ML methods for predicting pest outbreaks in Kazakhstan for grain crops. Comprehensive data spanning from 2005 to 2022, including pest population metrics, meteorological data, and geographical parameters, were employed to train the neural network for forecasting the population dynamics of Phyllotreta vittula pests in Kazakhstan. By evaluating various network configurations and hyperparameters, this research considers the application of MLP, MT-ANN, LSTM, transformer, and SVR. The transformer consistently demonstrates superior predictive accuracy in terms of MSE. Additionally, this work highlights the impact of several training hyperparameters such as epochs and batch size on predictive accuracy. Interestingly, the second season exhibits unique responses, stressing the effect of some features on model performance. By advancing our understanding of fine-tuning ANNs for accurate pest prediction in grain crops, this research contributes to the development of more precise and efficient pest control strategies. In addition, the consistent dominance of the transformer model makes it suitable for its implementation in practical applications. Finally, this work contributes to sustainable agricultural practices by promoting targeted interventions and potentially reducing reliance on chemical pesticides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.