Abstract
A fine tunable parity-time symmetric optoelectronic oscillator (PT-OEO) based on laser wavelength tuning is proposed and experimentally demonstrated. In the PT-OEO, an intensity modulator (IM) and a dispersion compensating fiber (DCF) are merged into the loop. Tuning the laser wavelength leads to a reconfigurable dispersion-induced power fading, serving as rough tunable oscillation mode selection. Meanwhile, to implement a fine-mode selection, parity-time symmetry breaking is introduced. Consequently, a fine tunable PT-OEO is achieved without using a high quality-factor (Q-factor) electrical filter. Experiment shows that the frequency of the generated signal can be tuned from 20.34 to 19.49 GHz with a step of 203 MHz, when the laser wavelength is manipulated from 1545 to 1565 nm. The phase noise is evaluated as −116.1 dBc/Hz @ 10-kHz offset frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.