Abstract

Intermittent avalanches in a multitude of materials are characterized by acoustic emission, AE, where local events lead to strain relaxations and generate shock waves (so-called “jerks”), which are measured at the sample surface. The bane of this approach is that several avalanche mechanisms may contribute to the same AE spectrum so that a detailed analysis of each individual contribution becomes virtually impossible. It is, hence, essential to develop tools to separate signals from different dynamical processes, such as ferroic domain switching, collapse of porous inclusions, dislocation movements, entanglements, and so on. Particularly, difficult cases are dynamical microstructures in fcc alloys where the AE signal strength is weak. Nevertheless, using profile analysis of AE signals, we can distinguish between two mechanisms, namely, dislocation movements and dynamic entanglements in fcc 316L stainless steel. In this approach, we are able to measure the statistical AE durations of both subsets separately. The fingerprint for superposed avalanches with different durations is seen by the scaling between the energy E and the maximum amplitude A of each avalanche E ∼ Ax with x = 2. While the same exponent x applies for both mechanisms, the scaling relation shows two branches with different absolute energy values. The two mechanisms are then confirmed by separating the energy distributions P(E) ∼ E−ε for the two mechanisms with ε = 1.55 for dislocation movements and ε = 1.36 for entanglements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.