Abstract

Calculation of electron impact excitation cross sections for singly charged Ga ions plays a crucial role in plasma modeling, facilitating the comprehension of plasma behavior, characteristics, and dynamics in diverse domains, such as astrophysics, fusion research, the semiconductor industry, etc. In the available literature, there is a notable scarcity of, or even a complete absence of, these cross sections. Hence, in the present work, electron impact excitation cross sections are calculated for the transitions from the fine structure resolved energy levels of the configurations 4s2 and 4s4p to the fine structure resolved energy levels of the configurations 4s4p , 4s5s , 4p2 and 4s4d of the singly charged Ga ion (Ga+) using the relativistic distorted wave approximation theory with the target states represented by multi configurational Dirac Fock wavefunctions. The cross sections are calculated for projectile electron energy varying from threshold to 500 eV. Furthermore, the electron impact excitation rate coefficients for all the transitions under investigation are also calculated for electron temperatures ranging from 0.5 to 5 eV. In addition, analytic fitting of the rate coefficients is also performed, providing a practical resource for directly utilizing in plasma modeling applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.