Abstract

The spectral amplitudes and travel times of seismic body waves are used to determine mantle velocity structures appropriate to distinct structural provinces within the western continental United States. In addition to basic amplitude and time data, travel-time delays and Pn velocity data from other studies are used as constraints in the systematic inversion of the data for mantle structure. The regional structures for the upper mantle determined in this manner show collectively rather sharp zones of transition (high velocity gradients) near 150, 400, 650 km and possibly near 1000 km. Comparatively, the regional structures indicate strong lateral variations in the upper mantle structure down to 150 km and possibly as deep as 200 km. The structures appropriate to the Rocky Mountain and Colorado plateau physiographic provinces show low-velocity zones capped by high-velocity lid zones, with variability in both the lid and the low-velocity zone properties from province to province and within these provinces to a much lesser degree. The mantle properties obtained for the Basin and Range contrast sharply with the plateau and mountain structures, with the lid zone being very thin or absent and abnormally low velocities extending from, or very near, the base of a thin crust to 150 km. The velocity determinations are coupled with estimates of the variation of the intrinsic dissipation function (Q) as a function of depth and frequency. These results show a pronounced low-Q zone corresponding to the average low-velocity zone depth range for the velocity models. The data suggest a frequency-dependent Q, with Q increasing with frequency. In total the results of the study strongly suggest phase transitions in the mantle, including a partially melted region corresponding to the low-velocity zone, the latter being highly variable in its properties over the region studied and strongly correlated with tectonic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.