Abstract

The rectal pads of the primitive insect Grylloblatta compodeiformis (Orthoptera : Grylloblattidae) were studied using light and electron microscopy. In this species, the rectal epithelium is thickened to form 6 prominent rectal pads, each of which is composed of tall columnar epithelial cells and laterally placed slender junctional cells, but is devoid of secondary cells. The rectal pads are interconnected by simple rectal epithelium, and are lined by a thin cuticular intima. They are surrounded by an extensive connective tissue space, which contains bundles of delicate connective tissue fibers, neurosecretory axons, and tracheae and tracheoles, which do not penetrate into the pads. The epithelial cells exhibit extensive infoldings of the apical plasma membranes that are closely associated with mitochondria. The lateral membranes are also highly folded around large mitochondria that possess longitudinally oriented cristae. These membrane folds form mitochondrial-scalariform junctional complexes and enclose intercellular channels and spaces. The apical cytoplasm of the epithelial cells contains numerous coated vesicles, dense tubular elements, multivesicular bodies and lysosomes, which suggests receptor-mediated endocytosis of macromolecules. The presence of large whorls of rough endoplasmic reticulum and abundant free ribosomes in the cytoplasm and nuclei with multiple, well-developed nucleoli indicate that the epithelial cells are actively engaged in protein synthesis. The ultrastructural features were examined in relation to their role in fluid transport in a cold habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.