Abstract
Electron microscopy of the filamentous gliding marine bacterium Flexibacter polymorphus demonstrated that the cell envelope consists of an electron-dense intermediate layer located between two unit-type membranes: an outer membrane, presumably of lipopolysaccharide, and an inner cytoplasmic membrane. Separation of living filaments into single cells by lysozyme suggests that a peptidoglycan moiety, possibly corresponding to the intermediate layer, might be situated between the two membranes. Cell division proceeds by invagination of the cytoplasmic membrane and intermediate layer forming a transverse septum. Cells generally fail to separate after the division process, so that a common outer membrane encloses all of the cells in a single filament. There is a continuous layer of macromolecular cup-shaped elements ('goblets') attached to the outermost surface of the lipopolysaccharide membrane. Tangential thin sections, as well as negatively stained preparations of envelope fragments (produced by sonication of autolyzed cells), showed that the goblets are arranged in a close-packed hexagonal array. The presence of electron-dense structures located between the outer and inner membranes, and exhibiting the same periodicity as the goblets, suggests that some part of the goblets penetrates the outer membrane and extends across the periplasmic space to the dense intermediate layer or cytoplasmic membrane. Spontaneous autolysis in aging cultures is accompanied by the formation and release into the culture medium of large numbers of outer membrane vesicles coated with globlets. A tentative reconstruction of the envelope of F. polymorphus, based on the fine-structural data, is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.