Abstract

We present a theoretical description of excitons and positively and negatively charged trions in "giant" CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thick shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and inter-particle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependences (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call