Abstract

The capsule of the muscle spindle from the anterior and posterior latissimus dorsi muscles of the adult domestic chicken has been studied with the electron microscope. As in other species, two distinct portions of the spindle capsule are distinguished: an outer capsule and an inner capsule. The outer capsule is structurally similar to and continuous with the perineural epithelium. Outer capsule cells are noted by the abundance of pinocytotic vesicles and a network of 6-7-nm microfilaments. The disposition of these microfilaments is circumferential with respect to the longitudinal axis of the spindle. It is proposed that they may provide a contractile mechanism for the capsule which may be related to the over-all functioning of the spindle during movements of the muscle. The inner capsule is composed of a contiguous network of cells possessing long cytoplasmic processes which envelop the intrafusal fibers and their nerve endings in sensory equatorial regions of the spindle. These cells may elaborate the fibrillar and amorphous extracellular material found in periaxial spindle space. They also possess modified cilia with a "9+0" microtubular pattern. It is suggested that these cilia may behave as sensory transducers, relating fluid changes in the periaxial space to the intrafusal fiber nerve endings. Capillaries of the non-fenestrated variety commonly traverse the outer and inner portions of the capsule and are usually completely surrounded by tenuous overlapping processes of inner capsule cells. These findings suggest that the spindle capsule plays a role as a metabolically-active diffusion barrier to the entrance of substances from the external milieu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.