Abstract
The high-energy absorption cross section of the Schwarzschild black hole is well approximated, in the eikonal regime, by the sum of two terms: the geometrical cross section of the black hole photon sphere and the contribution of a sinc function involving the geometrical characteristics (orbital period and Lyapunov exponent) of the null unstable geodesics lying on this photon sphere. From a numerical analysis, we show that, beyond the eikonal description, this absorption cross section presents a simple fine structure. We then describe it analytically by using Regge pole techniques and interpret it in geometrical terms. We naturally extend our analysis to arbitrary static spherically symmetric black holes endowed with a photon sphere and we then apply our formalism to Schwarzschild–Tangherlini and Reissner–Nordström black holes. Finally, on the example of the Schwarzschild black hole, we show numerically that a complicated hyperfine structure lying beyond the fine structure can also be observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.