Abstract

Regions of muscle fibers that are many sarcomeres in length and uniform with regard to striation spacing, curvature, and tilt have been observed by light microscopy. We have investigated the possibility that these sarcomere domains can explain the fine structure in optical diffraction patterns of skeletal muscle fibers. We studied near-field and far-field diffraction patterns with respect to fiber translation and to masking of the laser beam. The position of diffracted light in the near-field pattern depends on sarcomere length and position of the diffracting regions within the laser beam. When a muscle fiber was translated longitudinally through a fixed laser beam, the fine structural lines in the near-field diffraction pattern moved in the same direction and by the same amount as the fiber movement. Translation of the muscle fiber did not result in fine structure movement in the far-field pattern. As the laser beam was incrementally masked from one side, some fine structural lines in both the near-field and far-field diffraction patterns changed in intensity while others remained the same. Eventually, all the fine structural lines broadened and decreased in intensity. Often a fine structural line increased in intensity or a dark area in the diffraction pattern became brighter as the laser beam was restricted. From these results we conclude that the fine structure in the laser diffraction pattern is due to localized and relatively uniform regions of sarcomeres (domains) and to cross interference among light rays scattered by different domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call