Abstract

The high-speed melt spinning of sheath/core type bicomponent fibers was performed and the change of fiber structure with increasing take-up velocity was investigated. Two kinds of polyethylene, high density and linear low density (HDPE, LLDPE) with melt flow rates (MFR) of 11 and 50, [HDPE(11), LLDPE(50)], and poly(ethylene terephthalate) (PET) were selected and two sets of sheath/core combinations [HDPE(11)/PET and LLDPE(50)/PET bicomponent fibers] were studied. The fiber structure formation and physical property effects on the take-up velocities were investigated with birefringence, wide-angle X-ray diffraction, thermal analysis, tensile tests, and so forth. In the fiber structure formation of PE/PET, the PET component was developed but the PE components were suppressed in high-speed spinning. The different kinds of PE had little affect on the fine structure formation of bicomponent fibers. The difference in the mechanical properties of the bicomponent fiber with the MFR was very small. The instability of the interface was shown above a take-up velocity of 4 km/min, where the orientation-induced crystallization of PET started. LLDPE(50)/PET has a larger difference in intrinsic viscosity and a higher stability of the interface compared to the HDPE(11)/PET bicomponent fibers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2254–2266, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.