Abstract

Metopid armophoreans are ciliates commonly found in anaerobic environments worldwide; however, very little is known of their fine structure. In this study, the metopid Parametopidium circumlabens (Biggar and Wenrich 1932) Aescht, 1980, a common endocommensal of sea urchins, is investigated for the first time with emphasis on transmission electron microscopy, revealing several previously unknown elements of its morphology. Somatic dikinetids of P. circumlabens have a typical ribbon of transverse microtubules, an isolated microtubule near triplets 4 and 5 of the anterior kinetosome, plus two other microtubules between anterior and posterior kinetosomes, a short kinetodesmal striated fiber and long postciliary microtubules. In the dikinetids of the perizonal stripe, the kinetodesmal fiber is very pronounced, and there is a conspicuous microfibrillar network system associated with the kinetosomes. A new structure, shaped as a dense, roughly cylindrical mass surrounded by microtubules, is found associated with the posterior kinetosome of perizonal dikinetids. The paroral membrane is diplostichomonad and the adoral membranelles are of the "paramembranelle" type. Bayesian inference and maximum-likelihood analysis of the 18S-rDNA gene unambiguously placed P. circumlabens as sister group of the cluster formed by ((Atopospira galeata, Atopospira violacea) Metopus laminarius) + Clevelandellida, corroborating its classification within the Metopida.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call