Abstract

AbstractThe structure and formation mechanism of a microporous phase‐inversion poly(vinylidene fluoride) (PVDF) membrane exhibiting a relatively loosely packed agglomerate of semicrystalline globules are explored. The membrane has been prepared by the coagulation of a solution of PVDF in dimethylformamide by the action of 1‐octanol, which is a soft nonsolvent. Experimental observations pertain to the globule surface, which is dominated by a grainy nanostructure; the globular interior, which exhibits a range of fine structures (e.g., twisted sheets and treelike branches); and the globule–globule connections, which exhibit a sheetlike or ropelike structure. On the basis of the observed structural details and phase diagram considerations, it is proposed that the membrane structure is the result of a unique combination of a polymer crystallization and a liquid–liquid phase‐separation process, with end‐result globular structural features of remarkable uniformity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1578–1588, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call