Abstract

A study of the egg apparatus of Quercus gambelii was made at both the light and the electron microscope levels. This investigation was concerned primarily with the changes that occur in these cells before and after the process of fertilization and what role, if any, is played by the synergids in this phenomenon. The synergids before fertilization are, on the basis of ultrastructure, healthy, intact, functional cells. They have numerous mitochondria, dictyosomes, endoplasmic reticulum, ribosomes, and a typical nucleus. A prominent filiform apparatus is present, but the cell wall only extends a short distance around the micropylar end of the cells. Just before fertilization, one of the synergids degenerates. This is the synergid that receives the pollen tube and its discharge, including both male gametes. Dictyosomes increase in number and activity in the other synergid (persistent synergid) after fertilization. Eventually a complete cell wall forms around both of the synergids. No plasmodesmata are present in these walls. The egg has numerous mitochondria, dictyosomes, endoplasmic reticulum, and ribosomes, both free in the cytoplasm and attached to the endoplasmic reticulum. Lipid bodies are characteristic of this cell. A cell wall is present only around the micropylar end of the egg. After fertilization, little change occurs in the zygote. The number and activity of the dictyosomes increase, apparently in correlation with cell wall formation. The number of lipid bodies increases. The zygote is approximately the same size as the egg. Plastids are scarce, and starch grains are typically absent from all cells of the egg apparatus. It is suggested that the synergids function in the secretion of chemotropic substances that guide the growth of the pollen tube. Comparisons are made between the egg apparatus of Quercus gambelii and that of the other plants studied thus far.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.