Abstract

On the basis of the newly synthesized banana-shaped thieno[3,2- b] pyrrole building block [Bulumulla, C.; Gunawardhana, R.; Kularatne, R. N.; Hill, M. E.; McCandless, G. T.; Biewer, M. C.; Stefan, M. C. Thieno[3,2- b] pyrrole-Benzothiadiazole Banana-Shaped Small Molecules for Organic Field Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 11818-11825], several small molecules that can be used as organic semiconducting materials were theoretically designed. We have shown that these novel molecules with the donor-π conjugated bridge-acceptor-π conjugated bridge-donor (D-π-A-π-D) building block exhibit superior charge transport properties in organic field-effect transistors (OFETs). A variety of donors, π-bridges, and acceptors are examined, and the structural, electronic, optical, and charge transport properties of designed semiconductors are systematically investigated. The results highlight the impact of the core acceptor in improving the transport properties of the designed molecules. In particular, this work points toward the benzo-bis(1,2,5-thiadiazole) as the most promising acceptor that can be combined with thiophene π-bridge and flanked benzo-thiadiazole terminal units to produce a reasonable candidate for synthesis and for incorporating into OFET materials. For the suggested semiconductor, the small electron reorganization energy and large intramolecular coupling originating from dense π-stacking gave rise to enhanced electron mobility. This strategy can be helpful for further improving the performance of curved small molecules in field-effect devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.