Abstract

We examined lamina I trigemino- and spinothalamic tract (TSTT) terminals labeled with Phaseolus vulgaris leucoagglutinin in the nucleus submedius (Sm), a nociceptive relay in the cat's thalamus. Volume-rendered (three-dimensional) reconstructions of ten lamina I TSTT terminals identified with light and electron microscopy were built from serial ultrathin sections by computer, which enabled the overall structures of the terminal complexes to be characterized in detail. Two fundamentally different terminations were observed: compact clusters of numerous boutons, which predominate in the dense focus of a lamina I terminal field in the Sm, and boutons-of-passage, which are present throughout the terminal field and predominate in its periphery. Reconstructions of cluster terminations reveal that all boutons of each cluster make synaptic contact with protrusions and branch points on a single dendrite and involve presynaptic dendrites (PSDs) in triadic arrangements, providing a basis for the secure relay of sensory information. In contrast, reconstructions show that boutons-of-passage are generally characterized by simple contacts with PSDs, indicating an ascending inhibitory lamina I influence. These different synaptic arrangements are consistent with physiological evidence indicating that the morphologically distinct nociceptive-specific and thermoreceptive-(cold)-specific lamina I TSTT neurons terminate differently within the Sm. Thus, a suitable structural substrate exists in the cat's Sm for the inhibitory effect of cold on nociception, a behavioral and physiological phenomenon of fundamental significance. We conclude that the Sm is more than a simple relay for nociception, and that it may be an integrative comparator of ascending modality-selective information that arrives from neurons in lamina I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.