Abstract

Considering the complex structure of Chinese characters, particularly the connections and intersections between strokes, there are challenges in low accuracy of Chinese character stroke extraction and recognition, as well as unclear segmentation. This study builds upon the YOLOv8n-seg model to propose the YOLOv8n-seg-CAA-BiFPN Chinese character stroke fine segmentation model. The proposed Coordinate-Aware Attention mechanism (CAA) divides the backbone network input feature map into four parts, applying different weights for horizontal, vertical, and channel attention to compute and fuse key information, thus capturing the contextual regularity of closely arranged stroke positions. The network's neck integrates an enhanced weighted bi-directional feature pyramid network (BiFPN), enhancing the fusion effect for features of strokes of various sizes. The Shape-IoU loss function is adopted in place of the traditional CIoU loss function, focusing on the shape and scale of stroke bounding boxes to optimize the bounding box regression process. Finally, the Grad-CAM++ technique is used to generate heatmaps of segmentation predictions, facilitating the visualization of effective features and a deeper understanding of the model's focus areas. Trained and tested on the public Chinese character stroke datasets CCSE-Kai and CCSE-HW, the model achieves an average accuracy of 84.71%, an average recall rate of 83.65%, and a mean average precision of 80.11%. Compared to the original YOLOv8n-seg and existing mainstream segmentation models like SegFormer, BiSeNetV2, and Mask R-CNN, the average accuracy improved by 3.50%, 4.35%, 10.56%, and 22.05%, respectively; the average recall rates improved by 4.42%, 9.32%, 15.64%, and 24.92%, respectively; and the mean average precision improved by 3.11%, 4.15%, 8.02%, and 19.33%, respectively. The results demonstrate that the YOLOv8n-seg-CAA-BiFPN network can accurately achieve Chinese character stroke segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.