Abstract

Spatial genetic structure (SGS) within populations was analyzed for the ling-lived understory perennial herb Trillium camschatcense using allozyme loci. We used Sp statistics to compare SGS between 2 life-history stages, juveniles (J) and reproductives (R), as well as between 2 populations, continuous and fragmented, with different habitat conditions. In the continuous population, significant SGS was detected in both stages but the extent was greatly reduced with the progress of the stage (J, Sp = 0.0475; R, Sp = 0.0053). We inferred that limited seed dispersal and subsequent random loss of individuals from the family patches are responsible for the J and R stage structures, respectively. The fragmented population differed in the patterns of SGS; significant structure was detected in the R stage, but not in the J stage (J, Sp = 0.0021; R, Sp = 0.0165) despite significant positive inbreeding coefficients (J, F(IS) = 0.251). The observed differences in the J-stage structures between populations may be explained by habitat fragmentation effects because reduced recruitment in the fragmented population prevents the development of maternal sibling cohort. Such comparative analysis between populations and life-history stages can be useful to understand the different underlying causes of SGS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call