Abstract

Residues from use of depleted uranium (DU) munitions pose a lasting environmental impact through persistent contamination of soils. Consequently, an understanding of the factors determining the fate of DU in soil is necessary. An understudied factor is the interaction of root exudates with DU. This study describes the use of ‘Single-Cell-Sampling-and-Analysis’ (SiCSA) for the first time in soil and investigates the effects of root exudates on DU dissolution. Soil solutions from soil and plant-soil microcosms containing DU fragments were sampled and analysed using SiCSA and capillary electrophoresis/ICP-MS for organic acids and uranium. Nanolitre volumes of soil solution were sampled and analysed. Soils with DU fragments but no citrate addition showed low uranium concentrations in contrast to those with added citrate. Lupin root exudation gave concentrations up to 8 mM citrate and 4.4 mM malate in soil solution which solubilised DU fragments yielding transient solution concentrations of up to 30 mM. Root exudates solubilise DU giving high localised soil solution concentrations. This should be considered when assessing the environmental risk of DU munitions. The SiCSA method was used successfully in soil for the first time and enables investigations with high spatial and temporal resolution in the rhizosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call