Abstract

The fungus Monilinia vaccinii-corymbosi, a pathogen of Vaccinium spp., requires asexual and sexual spore production to complete its life cycle. A recent study found population structuring of M. vaccinii-corymbosi over a broad spatial scale in the United States. In this study, we examined fine-scale genetic structuring, temporal dynamics, and reproductive biology within a 125-by-132-m blueberry plot from 2010 to 2012. In total, 395 isolates of M. vaccinii-corymbosi were sampled from infected shoots and fruit to examine their multilocus haplotype (MLH) using microsatellite markers. The MLH of 190 single-ascospore isolates from 21 apothecia was also determined. Little to no genetic differentiation and unrestricted gene flow were detected among four sampled time points and between infected tissue types. Discriminant analysis of principal components suggested genetic structuring within the field, with at least K = 3 genetically distinct clusters maintained over four sampled time points. Single-ascospore progeny from eight apothecia had identical MLH and at least two distinct MLH were detected from 13 apothecia. Tests for linkage disequilibrium suggested that genetically diverse ascospore progeny were the product of recombination. This study supports the idea that the fine-scale dynamics of M. vaccinii-corymbosi may be complex, with genetic structuring, inbreeding, and outcrossing detected in the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call