Abstract
Abstract In the context of seismic imaging of gas/gas-hydrate systems, the fine-scale structure of subseabed gas-related reflections is assessed by taking advantage of the source signature of the deep-towed high-resolution SYSIF seismic device. We demonstrate the value of an original wavelet-based method and associated multiscale seismic attributes, applied to seismic data recently acquired on the western margin of the Arctic archipelago of Svalbard. From analysis in the wavelet domain, we recognize two types of gas-related reflections associated with submetre-scale distribution of gas. We identify a thin gas-charged layer associated with an apparent normal polarity reflection, and we detect gas patches associated with a reverse-polarity bright spot with frequency-dependent elastic properties at small seismic wavelengths. The results provide valuable information on the scale of features through which gas migrates and resolve ambiguities in the interpretation of the seismic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.