Abstract

Numerous studies have reported associations between airborne particles and a range of respiratory outcomes from symptoms to mortality. Current attention has been focused on the characteristics of these particles responsible for the adverse health effects. We have reanalyzed three recent longitudinal diary studies to examine the relative contributions of fine and coarse particles on respiratory symptoms and peak expiratory flow in schoolchildren. In the Harvard Six Cities Diary Study, lower respiratory symptoms in a two-pollutant model were associated with an interquartile range increment in fine particles [(for 15 microg/m3 particulate matter (PM) <2.5 microm in aerodynamic diameter (PM2.5), odds ratio = 1.29, 95% confidence limits (CL) = 1.06, 1.57] but not coarse particles (for 8 microg/m3 PM2.5-10, odds ratio = 1.05, 95% CL = 0.90, 1.23). In Uniontown, PA, we found that peak flow was associated with fine particles (for 15 microg/m3 PM2.1, peak flow = -0.91 liters/minute, 95% CL = -0.14, -1.68), especially fine sulfate particles, but not with coarse particles (for 15 microg/m3 PM2.1-10, +1.04 liters/minute, 95% CL = -1.32, +3.40). We found similar results for an equivalent children's cohort in State College, PA. We conclude that fine particles, especially fine sulfate particles, have much stronger acute respiratory effects than coarse particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.