Abstract

ABSTRACT A novel two-stage wet electrostatic precipitator (ESP) has been developed using a carbon brush pre-charger and collection plates with a thin water film. The electrical and particle collection performance was evaluated for submicrometer particles smaller than 0.01∼0.5 μm in diameter by varying the voltages applied to the pre-charger and collection plates as well as the polarity of the voltage. The collection efficiency was compared with that calculated by the theoretical models. The long-term performances of the ESP with and without water films were also compared in tests using Japanese Industrial Standards dust. The experimental results show that the carbon brush pre-charger of the two-stage wet ESP had approximately 10% particle capture, while producing ozone concentrations of less than 30 ppb. The produced amounts of ozone are significantly lower than the current limits set by international agencies. The ESP also achieved a high collection rate performance, averaging 90% for ultrafine particles, as based on the particle number concentration at an average velocity of 1 m/sec corresponding to a residence time of 0.17 sec. Higher particle collection efficiency for the ESP can be achieved by increasing the voltages applied to the pre-charger and the collection plates. The decreased collection efficiency that occurred during dust loading without water films was completely avoided by forming a thin water film on the collection plates at a water flow rate of 6.5 L/min/m2. IMPLICATIONS Current two-stage electrostatic precipitators (ESPs) have several technical problems such as a drop in collection efficiencies by small-particle re-entrainment during rapping and corrosion of metallic electrodes of the ESPs by corrosive gases. This paper evaluates a novel two-stage ESP that uses a nonmetallic pre-charger and water film collection plates to avoid the above mentioned problems of other ESPs. This ESP can be used not only for industrial applications but also for residential purposes because it has a high removal performance for fine particles with low ozone generation and maintains its efficiency due to the continuous cleaning of the collection plates with water film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call