Abstract

There is compelling evidence that exposure to particulate matter (PM) is linked to lung tumorigenesis. However, there is not enough experimental evidence to support the specific mechanisms of PM2.5-induced DNA damage and cell cycle arrest in lung tumorigenesis. In this study, we investigated the toxic effects and molecular mechanisms of PM2.5 on bronchial epithelial (BEAS-2B) cells. PM2.5 exposure reduced cell viability and enhanced LDH activity. The cell growth curves of BEAS-2B cells decreased gradually with the increase in PM2.5 dosage. A significant increase in MDA content and a decrease in GSH-Px activity were observed. The generation of ROS was enhanced obviously, while apoptosis increased in BEAS-2B cells exposed to PM2.5 for 24h. DNA damage was found to be more severe in the exposed groups compared with the control. For in-depth study, we have demonstrated that PM2.5 stimulated the activation of HER2/ErbB2 while significantly upregulating the expression of Ras/GADPH, p-BRAF/BRAF, p-MEK/MEK, p-ERK/ERK, and c-Myc/GADPH in a dose-dependent manner. In summary, we suggested that exposure to PM2.5 sustained the activation of HER2/ErbB2, which in turn promoted the activation of the Ras/Raf/MAPK pathway and the expression of the downstream target c-Myc. The overexpression of c-Myc may lead to G2/M arrest and aggravate the DNA damage and apoptosis in BEAS-2B after exposure to PM2.5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.