Abstract
A new algorithm to determine the position of the crack (discontinuity set) of certain minimizers of Mumford–Shah functional in situations when a crack-tip occurs is introduced. The conformal mapping \tilde{z}=\sqrt{z} in the complex plane is used to transform the free discontinuity problem to a new type of free boundary problem, where the symmetry of the free boundary is an additional constraint of a non-local nature. Instead of traditional Jacobi or Newton iterative methods, we propose a simple iteration method which does not need the Jacobian but is way fast than the Jacobi iteration. In each iteration, a Laplace equation needs to be solved on an irregular domain with a Dirichlet boundary condition on the fixed part of the boundary; and a Neumann type boundary condition along the free boundary. The augmented immersed interface method is employed to solve the potential problem. The numerical results agree with the analytic analysis and provide insight into some open questions in free discontinuity problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interfaces and Free Boundaries, Mathematical Analysis, Computation and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.