Abstract
Milo disease in sorghum is caused by isolates of the soil-borne fungus Periconia circinata that produce PC-toxin. Susceptibility to milo disease is conditioned by a single, semi-dominant gene, termed Pc. The susceptible allele (Pc) converts to a resistant form (pc) spontaneously at a gametic frequency of 10(-3) to 10(-4). A high-density genetic map was constructed around the Pc locus using DNA markers, allowing the Pc gene to be delimited to a 0.9 cM region on the short arm of sorghum chromosome 9. Physically, the Pc-region was covered by a single BAC clone. Sequence analysis of this BAC revealed twelve gene candidates. Several of the predicted genes in the region are homologous to disease resistance loci, including one NBS-LRR resistance gene analogue that is present in multiple tandem copies. Analysis of pc isolines derived from Pc/Pc sorghum suggests that one or more members of this NBS-LRR gene family are the Pc genes that condition susceptibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.