Abstract
The entirely heterochromatic Y chromosome of Drosophila melanogaster contains a series of simple sequence satellite DNAs which together account for about 80% of its length. Molecular cloning of the three simple sequence satellite DNAs of D. melanogaster (1.672, 1.686 and 1.705 g/ml) revealed that each satellite comprises several distinct repeat sequences. Together 11 related sequences were identified and 9 of them were shown to be located on the Y chromosome. In the present study we have finely mapped 8 of these sequences along the Y by in situ hybridization on mitotic chromosome preparations. The hybridization experiments were performed on a series of cytologically determined rearrangements involving the Y chromosome. The breakpoints of these rearrangements provided an array of landmarks along the Y which have been used to localize each sequence on the various heterochromatic blocks defined by Hoechst and N-banding techniques. The results of this analysis indicate a good correlation between the N-banded regions and 1.705 repeats and between the Hoechst-bright regions and the 1.672 repeats. However, the molecular basis for banding does not appear to depend exclusively on DNA content, since heterochromatic blocks showing identical banding patterns often contain different combinations of satellite repeats. The distribution of satellite repeats has also been analyzed with respect to the male fertility factors of the Y chromosome. Both loop-forming (kl-5, kl-3 and ks-1) and non-loop-forming (kl-2 and ks-2) fertility genes contain substantial amounts of satellite DNAs. Moreover, each fertility region is characterized by a specific combination of satellite sequences rather than by an homogeneous array of a single type of repeat.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.