Abstract
A high-resolution physical map targeting a cluster of yield-related QTLs on the long arm of rice chromosome 9 has been constructed across a 37.4 kb region containing seven predicted genes. Using a series of BC3F4 nearly isogenic lines (NILs) derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491), a total of seven QTLs for 1,000-grain weight, spikelets per panicle, grains per panicle, panicle length, spikelet density, heading date and plant height were identified in the cluster (P<or=0.0001). All seven QTLs were additive, and alleles from the low-yielding O. rufipogon parent were beneficial in the Hwaseongbyeo background. Yield trials with BC3F4 NILs showed that lines containing a homozygous O. rufipogon introgression in the target region out-yielded sibling NILs containing Hwaseongbyeo DNA by 14.2-17.7%, and out-yielded the Hwaseongbyeo parent by 16.2-23.7%. While higher yielding plants containing the O. rufipogon introgression were also taller and later than controls, the fact that all seven of the QTLs were co-localized in the same 37.4 kb interval suggests the possibility that a single, pleiotropic gene acting as a major regulator of plant development may control this suite of agronomically important plant phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.