Abstract

BackgroundFusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. Nine sets of near isogenic lines (NILs) for this locus were made available in a previous study. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774 F10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule.ResultsThis is the first report on fine mapping a QTL conferring FCR resistance in wheat. By three rounds of linkage mapping using the NILs and the NIL-derived population, the Qcrs.cpi-3B locus was mapped to an interval of 0.7 cM covering a physical distance of about 1.5 Mb. Seven markers co-segregating with the locus were developed. This interval contains a total of 63 gene-coding sequences based on the 3B pseudomolecule, and six of them were known to encode disease resistance proteins. Several of the genes in this interval were among those responsive to FCR infection detected in an earlier study.ConclusionsThe accurate localization of the Qcrs.cpi-3B locus and the development of the markers co-segregating with it should facilitate the incorporation of this large-effect QTL conferring FCR resistance into breeding programs as well as the cloning of the gene(s) underlying the QTL.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2105-0) contains supplementary material, which is available to authorized users.

Highlights

  • Fusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide

  • To determine the order of these SSR markers and confirm the results obtained from the near isogenic lines (NILs), a subpopulation containing the first 160 lines of the fine mapping population were analysed

  • The targeted locus was mapped between marker CS3BLCR-01 and CS3BLCR-03 and the physical locations of these two flanking markers on the 3B pseudomolecule were at the positions 773.0 Mbp and 750.8 Mbp, respectively

Read more

Summary

Introduction

Fusarium crown rot (FCR) is a major cereal disease in semi-arid areas worldwide. Of the various QTL reported, the one on chromosome arm 3BL (Qcrs.cpi-3B) has the largest effect that can be consistently detected in different genetic backgrounds. To identify markers that could be reliably used in tagging the Qcrs.cpi-3B locus, a NIL-derived population consisting of 774 F10 lines were generated and exploited to assess markers selected from the existing linkage map and generated from sequences of the 3B pseudomolecule. Fusarium crown rot (FCR) is a chronic and serious disease of cereals. Field surveys showed that F. pseudograminearum is the most prevalent pathogen for FCR in Queensland and New South Wales in Australia but many different species of Fusarium can cause this disease [1]. Of the QTL reported so far, the one on 3BL consistently

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call