Abstract
BackgroundSusceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics. However, cattle diagnosed as infected with M. bovis display varying signs of pathology. The variation in host response to infection could represent a continuum since time of exposure or distinct outcomes due to differing pathogen handling. The relationships between host genetics and variation in host response and pathological sequelae following M. bovis infection were explored by genotyping 1966 Holstein-Friesian dairy cows at 538,231 SNPs with three distinct phenotypes. These were: single intradermal cervical comparative tuberculin (SICCT) test positives with visible lesions (VLs), SICCT-positives with undetected visible lesions (NVLs) and matched controls SICCT-negative on multiple occasions.ResultsRegional heritability mapping identified three loci associated with the NVL phenotype on chromosomes 17, 22 and 23, distinct to the region on chromosome 13 associated with the VL phenotype. The region on chromosome 23 was at genome-wide significance and candidate genes overlapping the mapped window included members of the bovine leukocyte antigen class IIb region, a complex known for its role in immunity and disease resistance. Chromosome heritability analysis attributed variance to six and thirteen chromosomes for the VL and NVL phenotypes, respectively, and four of these chromosomes were found to explain a proportion of the phenotypic variation for both the VL and NVL phenotype. By grouping the M. bovis outcomes (VLs and NVLs) variance was attributed to nine chromosomes. When contrasting the two M. bovis infection outcomes (VLs vs NVLs) nine chromosomes were found to harbour heritable variation. Regardless of the case phenotype under investigation, chromosome heritability did not exceed 8% indicating that the genetic control of bTB resistance consists of variants of small to moderate effect situated across many chromosomes of the bovine genome.ConclusionsThese findings suggest the host genetics of M. bovis infection outcomes is governed by distinct and overlapping genetic variants. Thus, variation in the pathology of M. bovis infected cattle may be partly genetically determined and indicative of different host responses or pathogen handling. There may be at least three distinct outcomes following M. bovis exposure in dairy cattle: resistance to infection, infection resulting in pathology or no detectable pathology.
Highlights
Susceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics
The no detectable visible lesions (NVLs) diagnosis may represent a divergent host response phenotype under distinct host genetics. This paper explores these hypotheses by extending an earlier visible lesions (VLs) case–control genome-wide association study (GWAS) on Bovine tuberculosis (bTB) resistance [6] to quantify genetic variation associated with the NVL phenotype and compare with data on the VL phenotype
Regions of genetic variance associated with NVL phenotype, cases and NVLs vs VLs detected by Regional heritability (RH) mapping using 100SNP windows are presented in Fig. 1 and Table 1
Summary
Susceptibility to Mycobacterium bovis infection in cattle is governed in part by host genetics. The relationships between host genetics and variation in host response and pathological sequelae following M. bovis infection were explored by genotyping 1966 Holstein-Friesian dairy cows at 538,231 SNPs with three distinct phenotypes. These were: single intradermal cervical comparative tuberculin (SICCT) test positives with visible lesions (VLs), SICCT-positives with undetected visible lesions (NVLs) and matched controls SICCT-negative on multiple occasions. A recent study on the prediction of disease susceptibility in dairy cows using genetic markers demonstrated that genomic selection for bTB resistance is feasible and could be complementary to current control measures [5]. Dissection of the genomic architecture of the trait has revealed many bTB resistance loci mapped to several chromosomes for different cattle populations [6,7,8,9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.